Your Brokenheart

Feb 21 2013 Published by under Uncategorized

Neurolovers!

I‚Äôm excited to write to you from our new guest house at Scientopia!! Do you like it?!?!? 'Cause we sure are getting comfy ūüėČ

For the first post I decided to cover a topic that remains a mystery  not only to me and larger scientific community but also (let's be honest here) the greater HUMAN species....

Love.

Or really in my case I wanna know what happens in your brain after you get your heartbroken.

You know that feeling, when that one person you thought was your soulmate decides he/she wants to end things. I won't go into details about your chest wanting to explode, or the fact you seem to be obsessively thinking about them every minute of everyday..

I'll simply refer you to any Nicholas Sparks movie.

Hey, you had your lovey dovey time over Valentines day.

But before we jump right into the ‚Äúremoval‚ÄĚ of love, let just get a refresher on love in the brain.

Clicky on this video for a 3 min breakdown.

As you can imagine, love is a complicated emotion, it has so so so many layers. While the above video tries to summarize it into compact digestible bits, it really remains one of those topics that scientists struggle to put into nice boxes.

So what dose neuroscience make of this entire heatbreak business?

First of all its "scientifically" called romantic/social Rejection (I really should have paid more attention in my psych classes, would’ve taken me less time to research this stuff), but Imma call it heartbreak. More dramatic.

As you can imagine studying love is messy, by default studying rejection would also be as messy if not more so.

Studies have just recently  begun to delve into the neuroscience associated with heartbreak. The studies I will be referring too (links down below,they are both open access!!) utilized fMRI imaging techniques along with various psych tests, such as comparing neural activation between a picture of the previous lover and a neutral/friend photograph.

When looking at reward, addiction or romantic love, a number of studies have shown that there is a similar pattern of activation in the subcortical areas, which include the ventral tegmental area (aka VTA, personally one of my favorites), the nucleus accumbens core, ventral globus pallidus and the ventral putamen.

The study by Fisher et al. further explored that activation of the VTA with regards to heartbreak; their subjects showed greater activation in that area when viewing an image of the pervious lover then when viewing a neutral faces. They concluded that regardless of the fact that these individuals were no longer in the relationship, the participants VTA and angular gyrus remains very much activated.

They also found that their participants had a more pronounced activiation in the ventral striatum, nucleus accumbens core and the ventral putamen...

Notice something guys?!?!?

Same areas that are involved in falling in love are also still involved in having your heartbroken...

Fisher et al. also found that their participants had significant activation of orbitofrontal/prefrontal cortex, the forbrain regions of the reward system. This finding right here is what I personally find totally cool. You see, the activation of the forbrain suggests that falling in/out of love involves learning. The authors actually hypothesized that this learning process may have used the experience-reward systems (the interplay between the VTA, forebrain & nucleus accumbens). This in turn may shed light as to how the reward system may have been employed & when it is activated in terms of the perceived relationship status.

You may be wondering "Okey, we get that we are addicted.. but why does heartbreak physically hurt?"

Well lovers, according to a  study by Kross et al. heartbreak  hurts because, you guessed it, it actually activates the same "pain area" in the brain as physical pain.  They found that both physical pain and social rejection have overlapping representation in the somatosensory system (the conglomerate of sensory information, from touch to pain to spatial positioning of the body).

Annoying eh?

Questions/caveats of these types of studies are (in my opinion) the ages of the participants, the length/commitment of the relationship, the type of relationship & using psych tasks to invoke memories of the feelings. Feelings are messy.

The good news is that more extensive research is being done in this area. So ¬†go ahead, fall in love, fall out of love, donate your time to science and help us figure this out ūüėČ

Till next time.

Stay Neurofabulous

Rim

 

For your pleasure;

Fisher, E., Brown, L.L., Aron, A., Strong, G., & Mashek,D. (2010)

Kross, E., Berman, M.G., Mischel, W., Smith, E.E., & Wager, T.D. (2011)

David Disalvo's piece for Forbes

 

 

2 responses so far

STEMinist Profile: M√≥nica I. Feli√ļ-M√≥jer, Ph.D. Candidate in Neuroscience

Oct 05 2012 Published by under Uncategorized

M√≥nica I. Feli√ļ-M√≥jer_Steminist Profile
M√≥nica I. Feli√ļ-M√≥jer

Ph.D. candidate in Neuroscience at Harvard Medical School and vice-director of Ciencia Puerto Rico

My Ph.D. program is based at Harvard Medical School and my laboratory is in Massachusetts General Hospital. Ciencia Puerto Rico is the non-profit I co-direct as a volunteer.

What inspired you to pursue a career in STEM?
I grew up in Vega Alta, a small town in northern Puerto Rico, where nature was my playground, so I was always curious about how the world around me worked, what the biological basis for events that surrounded me was. While I never really had a scientific role model as a child, my parents were always very encouraging of my interest in science.

When I was 11 years old, someone very dear to me was diagnosed with a mental disorder and upon seeing how that person's behavior was changed as a result of this affliction, I began to develop an interest in learning how the brain works and how it leads to behavior.

At the beginning I thought I would become a physician, because I didn't think there were any other career options in science, until my General Biology professor (the very first scientist I ever met) encouraged me to try a summer research program. After that first research experience I was hooked, and I knew that was what I wanted to do: be a researcher.

What is the coolest project you have worked on and why?
The coolest project I have ever worked on is Ciencia Puerto Rico, the non-profit I've volunteered for during the last 6+ years. Ciencia Puerto Rico is a resource and expert network for anyone interested in science and Puerto Rico. Through its online collaborative platform, Ciencia Puerto Rico brings together members of the greater Puerto Rican scientific community and leverages their knowledge to give back to Puerto Rico and help advance science, research and science education in the archipelago.

Ciencia Puerto Rico has given me the opportunity to give back to Puerto Rico; to connect with scientists and individuals with shared interests, background and experiences; and to mentor younger students (from grade school to college) interested in STEM. Moreover, this project has helped me realize the impact of science beyond the bench and the importance of public engagement with science.

Role models and heroes:
There are many people that fit in this category. I would say that everyone that has taken the time to mentor me at different steps of my career and my life. The best advice I ever got is to have multiple mentors, figure out what they do best and how they do it, and learn from that. The support and advice from my mentors has helped me achieve my goals, and they are the reason I want to pay it forward by mentoring others.

Amongst these people, I have to give a special mention to my undergraduate research mentors, Carlos Jiménez-Rivera and Rafael Vázquez Torres, who really helped shape my scientific interests, gave me the first opportunity to think independently, and to explore my capabilities as a scientist to the fullest.

They were always demanding, but loving and encouraging, and frankly made me fall in love with scientific discovery. My Ph.D. advisor, Josh Kaplan, has also been very supportive of my academic and non-academic interests, and has allowed me to grow and mature as a graduate student and a scientist.

I also have to single out the Ciencia Puerto Rico volunteer team. They are a group of professionals highly committed to the organization's mission and to each other. They are a great source of advice, ideas and inspiration, both at the personal and professional level. We are like a family to me and working with them is a privilege.

Last but not least, my family. They have been a constant source of inspiration, support and encouragement.

Why do you love working in STEM?
Nothing compares to the thrill of discovery and of contributing to the advancement of knowledge. Working in STEM has encouraged me to be curious and think outside the box, something that is definitely helpful in the lab and in life. Also, being a scientist has allowed me to meet people from diverse backgrounds and expertise, and that diversity has enriched my life.

Advice for future STEMinists?

  1. Be passionate about what you do.
  2. Keep open to new directions and think outside the box.
  3. Be a leader.
  4. Have multiple mentors.
  5. Don't be afraid to network. You'd be amazed at the unexpectedly great opportunities that arise from networking.
  6. Believe in yourself and be confident.
  7. Don't let people say you can't or that it is too hard to do it, particularly because you are woman. I was once part of a panel and someone asked me if I ever felt at disadvantage because I was a double minority in science (a woman and Hispanic). My response: No, because I never let that define me. I've never seen myself as a Hispanic woman scientist; I am a scientist that happens to be a Hispanic woman. The way I see it, being a Hispanic woman is an advantage rather than a disadvantage, because of the diverse set of skills, experiences and knowledge that I can bring to the table.
  8. Work hard.
  9. Don't be afraid to ask for help.
  10. Always be curious.

Favorite website or app:
My email! It is an important tool for work, to stay in touch, network. Twitter is my one-stop for news about science, current affairs and issues that I care about. Facebook allows me to keep in touch with family and friends.

Twitter: @moefeliu
Site: www.cienciapr.org

No responses yet